Computing sparse orthogonal factors in Matlab

نویسنده

  • MIKAEL ADLERS
چکیده

In this report a new version of the multifrontal sparse QR factorization routine sqr, originally by Matstoms, for general sparse matrices is described and evaluated. In the previous version the orthogonal factor Q is discarded due to storage considerations. The new version provides Q and uses the multifrontal structure to store this orthogonal factor in a compact way. A new data class with overloaded operators is implemented in Matlab to provide an easy usage of the compact orthogonal factors. This implicit way of storing the orthogonal factor also results in faster computation and application of Q and Q T. Examples are given, where the new version is up to four times faster when computing only R and up to 1000 times faster when computing both Q and R, than the built-in function qr in Matlab. The sqr package is available at URL:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Matrix Partitioning Interface to PaToH in MATLAB

We present the PaToH MATLAB Matrix Partitioning Interface. The interface provides support for hypergraph-based sparse matrix partitioning methods which are used for efficient parallelization of sparse matrix-vector multiplication operations. The interface also offers tools for visualizing and measuring the quality of a given matrix partition. We propose a novel, multilevel, 2D coarsening-based ...

متن کامل

Numerical Continuation of Bifurcations of Limit Cycles in MATLAB

cl matcont and matcont are matlab continuation packages for the interactive numerical study of a range of parameterized nonlinear dynamical systems, in particular ODEs. matcont is an interactive graphical package and cl matcont is a commandline version. Both packages allow to compute curves of equilibria, limit points, Hopf points, limit cycles, flip, fold and torus bifurcation points of limit ...

متن کامل

Sparse Matrices in Matlab*P: Design and Implementation

Matlab*P is a flexible interactive system that enables computational scientists and engineers to use a high-level language to program cluster computers. The Matlab*P user writes code in the Matlab language. Parallelism is available via data-parallel operations on distributed objects and via task-parallel operations on multiple objects. Matlab*P can store distributed matrices in either full or s...

متن کامل

Computing non-negative tensor factorizations

Nonnegative tensor factorization (NTF) is a technique for computing a parts-based representation of high-dimensional data. NTF excels at exposing latent structures in datasets, and at finding good low-rank approximations to the data. We describe an approach for computing the NTF of a dataset that relies only on iterative linear-algebra techniques and that is comparable in cost to the nonnegativ...

متن کامل

Sparse Matrix Implementation in Octave

This paper discusses the implementation of the sparse matrix support with Octave. It address the algorithms that have been used, their implementation, including examples of using sparse matrices in scripts and in dynamically linked code. The octave sparse functions the compared with their equivalent functions with Matlab, and benchmark timings are calculated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998